TOPOLOGY 1 FINAL EXAMINATION

This exam is of **50 marks**. Please **read all the questions carefully** and **do not cheat**. Please feel free to use whatever theorems you have learned in class after stating them clearly. Please **hand in your phones** at the beginning of the class.

1. Let (X, d) be a complete metric space. Let $f: X \to X$ be a contraction - a continuous map such that

$$d(f(x), f(y)) \leq \alpha d(x, y)$$

for some $0 < \alpha < 1$. Show that there is a *unique* point x in X such that f(x) = x. (4)

- 2. Let $\{X_{\alpha}\}$ be an indexed family of spaces. Show
 - (1) If $\prod X_{\alpha}$ is locally compact, then each X_{α} is locally compact and further X_{α} is compact for all but finitely many α . (3)
 - (2) Assuming Tychonoff's theorem, prove the converse. Namely, show that if X_α are locally compact and X_α are compact for all but finitely many α, then ∏ X_α is locally compact.
 (3)

3a. Give an example of a Hausdorff space with a countable basis which is not metrizable. (4)

3b. Let X be **compact** and **Hausdorff**. Show X is **metrizable** if and only if X has a countable basis. (6)

4. Let X be **compact**. Suppose $\{f_n\}$ is a sequence of functions in $\mathcal{C}(X, \mathbb{R}^k)$, the space of continuous functions with values in \mathbb{R}^k , such that it is **equicontinuous** and **point-wise bounded** – namely the sequence $\{f_n(x)\}$ is bounded for each $x \in X$. Show that $\{f_n\}$ has a **uniformly convergent subsequence**. (6)

5. Consider the sequence of functions $\{f_n\}$, where $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ is given by

$$f_n(x) = x/n$$

(2)

(2)

In which of the three topologies on $\mathbb{R}^{\mathbb{R}}$ does it converge?

- (1) Uniform Topology
- (2) Topology of Compact convergence

Date: November 13 2017.

TOPOLOGY 1 FINAL EXAMINATION

(2)

(3) Topology of Point-wise convergence

6. Show that every **locally compact Hausdorff** space is a **Baire** space. (5)

7. If X is a completely regular space, show that X is connected $\Leftrightarrow \beta(X)$ is connected, where $\beta(X)$ is the Stone-Ĉech compactification. (5)

8. Let Z be a topological space. A subspace Y is said to be a **retract** of Z if there is a continuous map $r: Z \longrightarrow Y$ such that r(y) = y for all $y \in Y$. Show that

- (1) If Z is Hausdorff and Y is a retract of Z then Y is closed in Z. (2)
- (2) The set $A = \{(0,0), (1,1)\}$ is not a retract of \mathbb{R}^2 . (3)

(3)
$$S^1$$
 is a retract of $\mathbb{R}^2 - \{(0,0)\}.$ (3)